Bipolar Switching Properties of Neodymium Oxide RRAM Devices Using by a Low Temperature Improvement Method

نویسندگان

  • Kai-Huang Chen
  • Ming-Cheng Kao
  • Shou-Jen Huang
  • Jian-Zhi Li
چکیده

Bipolar resistive switching properties and endurance switching behavior of the neodymium oxide (Nd₂O₃) thin films resistive random access memory (RRAM) devices for a high resistive status/low resistive status (HRS/LRS) using a low temperature supercritical carbon dioxide fluid (SCF) improvement post-treatment process were investigated. Electrical and physical properties improvement of Nd₂O₃ thin films were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and current versus voltage (I-V) measurement. The metal-like behavior of ohmic conduction mechanism and metallic cluster reaction of hopping conduction mechanism in initial metallic filament path forming process of the SCF-treated thin films RRAM devices was assumed and discussed. Finally, the electrical conduction mechanism of the thin films RRAM derives for set/reset was also discussed and verified in filament path physical model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment

Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices w...

متن کامل

Illumination Effect on Bipolar Switching Properties of Gd:SiO2 RRAM Devices Using Transparent Indium Tin Oxide Electrode

To discuss the optoelectronic effect on resistive random access memory (RRAM) devices, the bipolar switching properties and electron-hole pair generation behavior in the transparent indium tin oxide (ITO) electrode of Gd:SiO2 thin films under the ultraviolet (λ = 400 nm) and red-light (λ = 770 nm) illumination for high resistance state (HRS)/low resistance state (LRS) was observed and investiga...

متن کامل

Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments

In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of...

متن کامل

Stochastic modeling of bipolar resistive switching in metal-oxide based memory by Monte Carlo technique

A stochastic model of the resistive switching mechanism in bipolar metal-oxide based resistive random access memory (RRAM) is presented. The distribution of electron occupation probabilities obtained is in agreement with previous work. In particular, a low occupation region is formed near the cathode. Our simulations of the temperature dependence of the electron occupation probability near the ...

متن کامل

Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations

A stochastic model of the resistive switching mechanism in bipolar metal-oxide-based resistive random access memory RRAM is presented. The distribution of electron occupation probabilities obtained is in good agreement with previous work. In particular, it is shown that a low occupation region is formed near the cathode. Our simulations of the temperature dependence of the electron occupation p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017